Matrix rings satisfying column sum conditions versus structural matrix rings
نویسندگان
چکیده
منابع مشابه
Group rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملProperties of k-Rings and Rings Satisfying Similar conditions
Jacobson introduced the concept of K-rings, continuing the investigation of Kaplansky and Herstein into the commutativity of rings. In this note we focus on the ring-theoretic properties of K-rings. We first construct basic examples of K-rings to be handled easily. It is shown that a semiprime K-ring of bounded index of nilpotency is a commutative domain. It is proved that if R is a prime K-rin...
متن کاملDiagonal Matrix Reduction over Refinement Rings
Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...
متن کاملStrongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1996
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00241-3